Gradient-based back-propagation dynamical iterative learning scheme for the neuro-fuzzy inference system

نویسندگان

  • Hadi Chahkandi Nejad
  • Mohsen Farshad
  • Fereidoon Nowshiravan Rahatabad
  • Omid Khayat
چکیده

In this paper, a gradient-based back propagation dynamical iterative learning algorithm is proposed for structure optimization and parameter tuning of the neuro-fuzzy system. Premise and consequent parameters of the neuro-fuzzy model are initialized randomly and then tuned by the proposed iterative algorithm. The learning algorithm is based on the first order partial derivative of the output with respect to the structure parameters. The first order derivative of the model output with respect to the structure parameters determines the sensitivity of the model to structure parameters. The sensitivity values are then used to set the tuning factors and parameters updating step sizes. Therefore, an adaptive dynamical iterative scheme is achieved which adapts the learning procedure to the current state of the performance during the optimization process. Larger tuning step sizes make the convergence speed higher and vice versa. In this regard, this parameter is treated according to the calculated sensitivity of the model to the parameter. The proposed learning algorithm is compared with the least square back propagation method, genetic algorithm and chaotic genetic algorithm in the neuro-fuzzy model structure optimization. Smaller mean square error and shorter learning time are sought in this paper, and the performance of the proposed learning algorithm is versified regarding these criteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Inverse Control of Flexible Link Robot Using ANFIS Based on Type-2 Fuzzy

This paper presents a novel adaptive neuro-fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part. The capability of the proposed ANFIS2 for function approximation and dynamical system identification is remarkable. The structure of ANFIS2 is very sim...

متن کامل

Fraud Detection of Credit Cards Using Neuro-fuzzy Approach Based on TLBO and PSO Algorithms

The aim of this paper is to detect bank credit cards related frauds. The large amount of data and their similarity lead to a time consuming and low accurate separation of healthy and unhealthy samples behavior, by using traditional classifications. Therefore in this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used in order to reach a more efficient and accurate algorithm. By com...

متن کامل

Using Neuro-fuzzy Technique

Nonlinear system identification is becoming an important tool which can be used to improve control performance. This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for controlling a car. The vehicle must follow a predefined path by supervised learning. Back-propagation gradient descent method was performed to train the ANFIS system. The performance of the...

متن کامل

Utilizing a new feed-back fuzzy neural network for solving a system of fuzzy equations

This paper intends to offer a new iterative method based on articial neural networks for finding solution of a fuzzy equations system. Our proposed fuzzied neural network is a ve-layer feedback neural network that corresponding connection weights to output layer are fuzzy numbers. This architecture of articial neural networks, can get a real input vector and calculates its corresponding fuzzy o...

متن کامل

Estimating the Optimal Dosage of Sodium Valproate in Idiopathic Generalized Epilepsy with Adaptive Neuro-Fuzzy Inference System

Introduction: Epilepsy is a clinical syndrome in which seizures have a tendency to recur. Sodium valproate is the most effective drug in the treatment of all types of generalized seizures. Finding the optimal dosage (the lowest effective dose) of sodium valproate is a real challenge to all neurologists. In this study, a new approach based on Adaptive Neuro-Fuzzy Inference System (ANFIS) was pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Systems

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2016